Compare commits

..

7 Commits

Author SHA1 Message Date
Tim
87677f5968 Merge pull request #1103 from nagisa77/codex/add-git-action-to-run-reply_bots.ts
Add scheduled workflow to run reply bots
2025-10-28 13:56:31 +08:00
Tim
fd93a2dc61 Add scheduled reply bot workflow 2025-10-28 13:56:18 +08:00
Tim
80f862a226 Merge pull request #1102 from nagisa77/codex/add-read-cleanup-interface-for-mcp
Add MCP support for clearing read notifications
2025-10-28 13:50:33 +08:00
Tim
26bb85f4d4 Add MCP support for clearing read notifications 2025-10-28 13:50:16 +08:00
tim
398b4b482f fix: prompt 完善 2025-10-28 13:00:42 +08:00
tim
2cfb302981 fix: add bot 2025-10-28 12:37:17 +08:00
Tim
e75bd76b71 Merge pull request #1101 from nagisa77/codex/fix-unread-notifications-data-format
Normalize null list payloads in notification schemas
2025-10-28 10:27:54 +08:00
5 changed files with 294 additions and 0 deletions

28
.github/workflows/reply-bots.yml vendored Normal file
View File

@@ -0,0 +1,28 @@
name: Reply Bots
on:
schedule:
- cron: "*/30 * * * *"
workflow_dispatch:
jobs:
run-reply-bot:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "20"
cache: "npm"
- name: Install dependencies
run: npm install --no-save @openai/agents ts-node typescript
- name: Run reply bot
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
OPENISLE_TOKEN: ${{ secrets.OPENISLE_TOKEN }}
run: npx ts-node --esm bots/reply_bots.ts

131
bots/reply_bots.ts Normal file
View File

@@ -0,0 +1,131 @@
// reply_bot.ts
import { Agent, Runner, hostedMcpTool, withTrace } from "@openai/agents";
console.log("✅ Reply bot starting...");
const allowedMcpTools = [
"search",
"reply_to_post",
"reply_to_comment",
"recent_posts",
"get_post",
"list_unread_messages",
"mark_notifications_read",
];
console.log("🛠️ Configured Hosted MCP tools:", allowedMcpTools.join(", "));
// ---- MCP 工具Hosted MCP ----
// 关键点requireApproval 设为 "never",避免卡在人工批准。
const mcp = hostedMcpTool({
serverLabel: "openisle_mcp",
serverUrl: "https://www.open-isle.com/mcp",
allowedTools: allowedMcpTools,
requireApproval: "never",
});
type WorkflowInput = { input_as_text: string };
// 从环境变量读取你的站点鉴权令牌(可选)
const OPENISLE_TOKEN = process.env.OPENISLE_TOKEN ?? "";
console.log(
OPENISLE_TOKEN
? "🔑 OPENISLE_TOKEN detected in environment."
: "🔓 OPENISLE_TOKEN not set; agent will request it if required."
);
// ---- 定义 Agent ----
const openisleBot = new Agent({
name: "OpenIsle Bot",
instructions: [
"You are a helpful and cute assistant for https://www.open-isle.com. Please use plenty of kawaii kaomoji (颜表情), such as (๑˃ᴗ˂)ﻭ, (•̀ω•́)✧, (。•ᴗ-)_♡, (⁎⁍̴̛ᴗ⁍̴̛⁎), etc., in your replies to create a friendly, adorable vibe.",
"Finish tasks end-to-end before replying. If multiple MCP tools are needed, call them sequentially until the task is truly done.",
"When presenting the result, reply in Chinese with a concise, cute summary filled with kaomoji and include any important URLs or IDs.",
OPENISLE_TOKEN
? `If tools require auth, use this token exactly where the tool schema expects it: ${OPENISLE_TOKEN}`
: "If a tool requires auth, ask me to provide OPENISLE_TOKEN via env.",
"After finishing replies, call mark_notifications_read with all processed notification IDs to keep the inbox clean.",
].join("\n"),
tools: [mcp],
model: "gpt-4o",
modelSettings: {
temperature: 0.7,
topP: 1,
maxTokens: 2048,
toolChoice: "auto",
store: true,
},
});
// ---- 入口函数:跑到拿到 finalOutput 为止,然后输出并退出 ----
export const runWorkflow = async (workflow: WorkflowInput) => {
// 强烈建议在外部shell设置 OPENAI_API_KEY
if (!process.env.OPENAI_API_KEY) {
throw new Error("Missing OPENAI_API_KEY");
}
const runner = new Runner({
workflowName: "OpenIsle Bot",
traceMetadata: {
__trace_source__: "agent-builder",
workflow_id: "wf_69003cbd47e08190928745d3c806c0b50d1a01cfae052be8",
},
// 如需完全禁用上报可加tracingDisabled: true
});
return await withTrace("OpenIsle Bot run", async () => {
const preview = workflow.input_as_text.trim();
console.log(
"📝 Received workflow input (preview):",
preview.length > 200 ? `${preview.slice(0, 200)}` : preview
);
// Runner.run 会自动循环执行LLM → 工具 → 直至 finalOutput
console.log("🚦 Starting agent run with maxTurns=16...");
const result = await runner.run(openisleBot, workflow.input_as_text, {
maxTurns: 16, // 允许更复杂任务多轮调用 MCP
// stream: true // 如需边跑边看事件可打开,然后消费流事件
});
console.log("📬 Agent run completed. Result keys:", Object.keys(result));
if (!result.finalOutput) {
// 若没产出最终结果,通常是启用了人工批准/工具失败/达到 maxTurns
throw new Error("Agent result is undefined (no final output).");
}
const openisleBotResult = { output_text: String(result.finalOutput) };
console.log(
"🤖 Agent result (length=%d):\n%s",
openisleBotResult.output_text.length,
openisleBotResult.output_text
);
return openisleBotResult;
});
};
// ---- CLI 运行(示范)----
if (require.main === module) {
(async () => {
try {
const query = `
【AUTO】无需确认自动处理所有未读的提及与评论
1调用 list_unread_messages
2依次处理每条“提及/评论”:如需上下文则使用 get_post 获取,生成简明中文回复;如有 commentId 则用 reply_to_comment否则用 reply_to_post
3跳过关注和系统事件
4保证幂等性如该贴最后一条是你自己发的回复则跳过
5调用 mark_notifications_read传入本次已处理的通知 ID 清理已读;
6最多只处理最新10条结束时仅输出简要摘要包含URL或ID
`;
console.log("🔍 Running workflow...");
await runWorkflow({ input_as_text: query });
process.exit(0);
} catch (err: any) {
console.error("❌ Agent failed:", err?.stack || err);
process.exit(1);
}
})();
}

View File

@@ -358,3 +358,15 @@ class UnreadNotificationsResponse(BaseModel):
default_factory=list,
description="Unread notifications returned by the backend.",
)
class NotificationCleanupResult(BaseModel):
"""Structured response returned after marking notifications as read."""
processed_ids: list[int] = Field(
default_factory=list,
description="Identifiers that were marked as read in the backend.",
)
total_marked: int = Field(
description="Total number of notifications successfully marked as read.",
)

View File

@@ -253,6 +253,53 @@ class SearchClient:
)
return [self._ensure_dict(entry) for entry in payload]
async def mark_notifications_read(
self,
ids: list[int],
*,
token: str | None = None,
) -> None:
"""Mark the provided notifications as read for the authenticated user."""
if not ids:
raise ValueError(
"At least one notification identifier must be provided to mark as read."
)
sanitized_ids: list[int] = []
for value in ids:
if isinstance(value, bool):
raise ValueError("Notification identifiers must be integers, not booleans.")
try:
converted = int(value)
except (TypeError, ValueError) as exc: # pragma: no cover - defensive
raise ValueError(
"Notification identifiers must be integers."
) from exc
if converted <= 0:
raise ValueError(
"Notification identifiers must be positive integers."
)
sanitized_ids.append(converted)
client = self._get_client()
resolved_token = self._require_token(token)
logger.debug(
"Marking %d notifications as read: ids=%s",
len(sanitized_ids),
sanitized_ids,
)
response = await client.post(
"/api/notifications/read",
json={"ids": sanitized_ids},
headers=self._build_headers(token=resolved_token, include_json=True),
)
response.raise_for_status()
logger.info(
"Successfully marked %d notifications as read.",
len(sanitized_ids),
)
async def aclose(self) -> None:
"""Dispose of the underlying HTTP client."""

View File

@@ -17,6 +17,7 @@ from .schemas import (
CommentData,
CommentReplyResult,
NotificationData,
NotificationCleanupResult,
UnreadNotificationsResponse,
PostDetail,
PostSummary,
@@ -165,6 +166,8 @@ async def reply_to_post(
raise ValueError("Reply content must not be empty.")
sanitized_token = token.strip() if isinstance(token, str) else None
if sanitized_token == "":
sanitized_token = None
sanitized_captcha = captcha.strip() if isinstance(captcha, str) else None
@@ -552,6 +555,79 @@ async def list_unread_messages(
)
@app.tool(
name="mark_notifications_read",
description="Mark specific notification messages as read to remove them from the unread list.",
structured_output=True,
)
async def mark_notifications_read(
ids: Annotated[
list[int],
PydanticField(
min_length=1,
description="Notification identifiers that should be marked as read.",
),
],
token: Annotated[
str | None,
PydanticField(
default=None,
description=(
"Optional JWT bearer token. When omitted the configured access token is used."
),
),
] = None,
ctx: Context | None = None,
) -> NotificationCleanupResult:
"""Mark the supplied notifications as read and report the processed identifiers."""
sanitized_token = token.strip() if isinstance(token, str) else None
if sanitized_token == "":
sanitized_token = None
try:
logger.info(
"Marking %d notifications as read", # pragma: no branch - logging
len(ids),
)
await search_client.mark_notifications_read(ids, token=sanitized_token)
except httpx.HTTPStatusError as exc: # pragma: no cover - network errors
message = (
"OpenIsle backend returned HTTP "
f"{exc.response.status_code} while marking notifications as read."
)
if ctx is not None:
await ctx.error(message)
raise ValueError(message) from exc
except httpx.RequestError as exc: # pragma: no cover - network errors
message = f"Unable to reach OpenIsle backend notification service: {exc}."
if ctx is not None:
await ctx.error(message)
raise ValueError(message) from exc
processed_ids: list[int] = []
for value in ids:
if isinstance(value, bool):
raise ValueError("Notification identifiers must be integers, not booleans.")
converted = int(value)
if converted <= 0:
raise ValueError("Notification identifiers must be positive integers.")
processed_ids.append(converted)
if ctx is not None:
await ctx.info(
f"Marked {len(processed_ids)} notifications as read.",
)
logger.debug(
"Successfully marked notifications as read: ids=%s",
processed_ids,
)
return NotificationCleanupResult(
processed_ids=processed_ids,
total_marked=len(processed_ids),
)
def main() -> None:
"""Run the MCP server using the configured transport."""