title, keywords, description
| title | keywords | description | |||
|---|---|---|---|---|---|
| AI Statistics |
|
AI Statistics plugin configuration reference |
Introduction
Provides basic AI observability capabilities, including metric, log, and trace. The ai-proxy plug-in needs to be connected afterwards. If the ai-proxy plug-in is not connected, the user needs to configure it accordingly to take effect.
Runtime Properties
Plugin Phase: CUSTOM
Plugin Priority: 200
Configuration instructions
The default request of the plug-in conforms to the openai protocol format and provides the following basic observable values. Users do not need special configuration:
- metric: It provides indicators such as input token, output token, rt of the first token (streaming request), total request rt, etc., and supports observation in the four dimensions of gateway, routing, service, and model.
- log: Provides input_token, output_token, model, llm_service_duration, llm_first_token_duration and other fields
Users can also expand observable values through configuration:
| Name | Type | Required | Default | Description |
|---|---|---|---|---|
attributes |
[]Attribute | optional | - | Information that the user wants to record in log/span |
disable_openai_usage |
bool | optional | false | When using a non-OpenAI-compatible protocol, the support for model and token is non-standard. Setting the configuration to true can prevent errors. |
Attribute Configuration instructions:
| Name | Type | Required | Default | Description |
|---|---|---|---|---|
key |
string | required | - | attribute key |
value_source |
string | required | - | attribute value source, optional values are fixed_value, request_header, request_body, response_header, response_body, response_streaming_body |
value |
string | required | - | how to get attribute value |
default_value |
string | optional | - | default value for attribute |
rule |
string | optional | - | Rule to extract attribute from streaming response, optional values are first, replace, append |
apply_to_log |
bool | optional | false | Whether to record the extracted information in the log |
apply_to_span |
bool | optional | false | Whether to record the extracted information in the link tracking span |
trace_span_key |
string | optional | - | span attribute key, default is the value of key |
as_separate_log_field |
bool | optional | false | Whether to use a separate log field, the field name is equal to the value of key |
The meanings of various values for value_source are as follows:
fixed_value: fixed valuerequest_header: The attribute is obtained through the http request headerrequest_body: The attribute is obtained through the http request bodyresponse_header: The attribute is obtained through the http response headerresponse_body: The attribute is obtained through the http response bodyresponse_streaming_body: The attribute is obtained through the http streaming response body
When value_source is response_streaming_body, rule should be configured to specify how to obtain the specified value from the streaming body. The meaning of the value is as follows:
first: extract value from the first valid chunkreplace: extract value from the last valid chunkappend: join value pieces from all valid chunks
Configuration example
If you want to record ai-statistic related statistical values in the gateway access log, you need to modify log_format and add a new field based on the original log_format. The example is as follows:
'{"ai_log":"%FILTER_STATE(wasm.ai_log:PLAIN)%"}'
If the field is set with as_separate_log_field, for example:
attributes:
- key: consumer
value_source: request_header
value: x-mse-consumer
apply_to_log: true
as_separate_log_field: true
Then to print in the log, you need to set log_format additionally:
'{"consumer":"%FILTER_STATE(wasm.consumer:PLAIN)%"}'
Empty
Metric
# counter, cumulative count of input tokens
route_upstream_model_consumer_metric_input_token{ai_route="ai-route-aliyun.internal",ai_cluster="outbound|443||llm-aliyun.internal.dns",ai_model="qwen-turbo",ai_consumer="none"} 24
# counter, cumulative count of output tokens
route_upstream_model_consumer_metric_output_token{ai_route="ai-route-aliyun.internal",ai_cluster="outbound|443||llm-aliyun.internal.dns",ai_model="qwen-turbo",ai_consumer="none"} 507
# counter, cumulative total duration of both streaming and non-streaming requests
route_upstream_model_consumer_metric_llm_service_duration{ai_route="ai-route-aliyun.internal",ai_cluster="outbound|443||llm-aliyun.internal.dns",ai_model="qwen-turbo",ai_consumer="none"} 6470
# counter, cumulative count of both streaming and non-streaming requests
route_upstream_model_consumer_metric_llm_duration_count{ai_route="ai-route-aliyun.internal",ai_cluster="outbound|443||llm-aliyun.internal.dns",ai_model="qwen-turbo",ai_consumer="none"} 2
# counter, cumulative latency of the first token in streaming requests
route_upstream_model_consumer_metric_llm_first_token_duration{ai_route="ai-route-aliyun.internal",ai_cluster="outbound|443||llm-aliyun.internal.dns",ai_model="qwen-turbo",ai_consumer="none"} 340
# counter, cumulative count of streaming requests
route_upstream_model_consumer_metric_llm_stream_duration_count{ai_route="ai-route-aliyun.internal",ai_cluster="outbound|443||llm-aliyun.internal.dns",ai_model="qwen-turbo",ai_consumer="none"} 1
Below are some example usages of these metrics:
Average latency of the first token in streaming requests:
irate(route_upstream_model_consumer_metric_llm_first_token_duration[2m])
/
irate(route_upstream_model_consumer_metric_llm_stream_duration_count[2m])
Average process duration of both streaming and non-streaming requests:
irate(route_upstream_model_consumer_metric_llm_service_duration[2m])
/
irate(route_upstream_model_consumer_metric_llm_duration_count[2m])
Log
{
"ai_log":"{\"model\":\"qwen-turbo\",\"input_token\":\"10\",\"output_token\":\"69\",\"llm_first_token_duration\":\"309\",\"llm_service_duration\":\"1955\"}"
}
Trace
When the configuration is empty, no additional attributes will be added to the span.
Extract token usage information from non-openai protocols
When setting the protocol to original in ai-proxy, taking Alibaba Cloud Bailian as an example, you can make the following configuration to specify how to extract model, input_token, output_token
attributes:
- key: model
value_source: response_body
value: usage.models.0.model_id
apply_to_log: true
apply_to_span: false
- key: input_token
value_source: response_body
value: usage.models.0.input_tokens
apply_to_log: true
apply_to_span: false
- key: output_token
value_source: response_body
value: usage.models.0.output_tokens
apply_to_log: true
apply_to_span: false
Metric
route_upstream_model_consumer_metric_input_token{ai_route="bailian",ai_cluster="qwen",ai_model="qwen-max"} 343
route_upstream_model_consumer_metric_output_token{ai_route="bailian",ai_cluster="qwen",ai_model="qwen-max"} 153
route_upstream_model_consumer_metric_llm_service_duration{ai_route="bailian",ai_cluster="qwen",ai_model="qwen-max"} 3725
route_upstream_model_consumer_metric_llm_duration_count{ai_route="bailian",ai_cluster="qwen",ai_model="qwen-max"} 1
Log
{
"ai_log": "{\"model\":\"qwen-max\",\"input_token\":\"343\",\"output_token\":\"153\",\"llm_service_duration\":\"19110\"}"
}
Trace
Three additional attributes model, input_token, and output_token can be seen in the trace spans.
Cooperate with authentication and authentication record consumer
attributes:
- key: consumer
value_source: request_header
value: x-mse-consumer
apply_to_log: true
Record questions and answers
attributes:
- key: question
value_source: request_body
value: messages.@reverse.0.content
apply_to_log: true
- key: answer
value_source: response_streaming_body
value: choices.0.delta.content
rule: append
apply_to_log: true
- key: answer
value_source: response_body
value: choices.0.message.content
apply_to_log: true